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The article states and solves the problem of a nonsteady temperature field in 
a thin plate between two tubes interacting with flows of heat carrier in the 
case of unidirectional, heterodirectional, loop, and circulating flow by the 
method of integral Laguerre transformation with respect to a time variable. 

The analytical investigation of nonsteady processes of conjugate heat exchange in ele- 
ments of power generating installations still remains one of the topical problems of modern 
theoretical heat engineering. The known classical methods of solving linear initial-boundary 
problems of conjugated heat conduction and of complex heat exchange such as: the method 
of Laplace integral transformation, the method of finite integral transformations, the method 
of boundary value problems, variational methods, etc. [1-5] yielded a number of theoretically 
and practically important results. The method of integral Laguerre transformation with re- 
spect to a time variable [6-8] is successful in many cases when the use of finite integral 
transformations is made difficult by the complexity of constructing the kernel of transforma- 
tion [9, i0]. 

Let us consider the problem of the nonsteady temperature field in a thin plate bordered 
at the edges by two tubes interacting with flows of heat carriers (see Fig. i). We assume 
that the thermal conductivity of the material of the plate and of the materials of the tubes 
along the z-axis may be neglected. This is correct if the distance between the tubes is 
considerably smaller than the characteristic longitudinal dimension of the problem on which 
the temperature field changes substantially. We assume that the walls of the tubes are thin, 
and that there are conditions of ideal thermal contact on the lines of the points of the plate 
with the tubes. We take it that the thermophysical properties of the material, the heat 
exchange coefficients with the flows of heat carrier and with the environment, and also the 
thicknesses of the plate and the tube walls do not depend on the sought temperature, on the 
spatial independent variables, or on the independent time variable. 

To describe the processes of interaction of the flows of heat carriers with the tubes 
we use the model of "ideal displacement" which takes into account the effects of possible 
heat accumulation in an elementary volume of the medium in consequence of the finite values 
of specific heat capacity of the flows. For the sake of simplicity we assume that the flow 
rates of the heat carriers are constant in time. 

In formulating the problem we assume as known the temperature distribution over the 
plate, the tube walls, and in the flows of heat carrier at the initial instant, and at the 
subsequent instants the ambient temperature and the temperature of the flows of heat carrier 

Fig. i. Calculation 
diagram. 
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"at the inlet" to the heat exchanger whose position is connected with the actual organization 
of movement of the heat carrier (parallel flow, counterflow, or loop flow). 

We note that for the suggested method of solution a substantial constraint is the assump- 
tion that the statement of the problem is linear; assumpLions that the thermophysical param- 
eters, heat exchange and heat transfer coefficients, the thicknesses of the plate and the 
tube walls, and the flow rates of the heat carriers are constant, simplify the calculations, 
but they are not mandatory. 

We write the differential equation and the initial and boundary conditions for the tem- 
perature field in the plate: 
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where ui(t, x, z), i = i, 2 are the temperature distributions in the first and the second 
tube described by the following equations: 
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u i (0, x, z ) =  u ~ (x, z), ( 8 )  

u i (t, O, z ) =  u i (t,  2b~, z). (9) 

The differential equations and the initial and boundary conditions for determining the 

temperatures of the heat carriers v i (t, z), i = i, 2 have the form: 
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The physical meaning of the designations used in writing the problem (1)-(12) can be 
easily reestablished from the form of the equations and of the initial and boundary condi- 
tions, we only note that Eqs. (i0) are correct on the assumption that the temperatures in 
the cross sections of the tubes are constant, and the boundary conditions (12) are correct 
for the case G I > 0 and G 2 > 0 ("parallel flow"). 

If we assume that the temperature fields in the tubes remain symmetrical relative to 

the section x = b i, i = i~--2, in the course of time, then conditions (5), (6), and (9) 

assume the form: 
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This entails a natural change of the right-hand side of Eq. (i0). 
will be carried out for the symmetric case. 

Further calculations 
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To solve the problem (1)-(12) we use Laguerre transformation [6] with respect to the 
v a r i a b l e  t :  

f ,~=( / ;  L ~ ) = i f ( t ) L ~ ( t ) e x p ( - - t ) d t ,  n = O ,  1, 2 . . . . .  ( 1 3 )  
0 

where Ln(t) is a Laguerre polynomial of n-th order. For the transformation (13) the follow- 
ing f u n c t i o n a l  p r o p e r t i e s  a r e  known: 

f ( t ) =  ~ f . L . ( t ) ,  (14) 
t~O 

- - ~ ;  L~ -- ~f~--f(o). (i5) 
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It is expedient to interpret the sequence fn as an infinite-dimensional column vector, 
and naturally to use the vector-matrix symbolic form of writing. 

In the image space the problem (1)-(12) assumes the form: 
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u ' ~  colon {u i~ u 'o, u,O . . . .  }; v ' ~  colon { J  ~ v i~ v i~ . . . .  }, i =  T~-2; 

~,~b = colon {(V,,,~)o, (~b.),, ( ~ b h  . . . .  }; 

(Tamb)h = i '~mb~'Lh exp (-- t) dr, k = O, 1, 2 . . . .  ; 
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i i i i V ,  co1oI1 = { (V, )o  . . . .  (v~)x,  (v , )2 ,  }; (v~)h = i ' v~ ,L~exp  ( - - t )  dt,  k = O, 1 . . . .  2, ; i =  ~ , 2 ;  

(E)ik = 6ik is an identity matrix; and the matrix (Dki) has elements of zero above the 
diagonal, and of unity on and below the diagonal. 
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We introduce the designations: 

O~ O0 . u~ Ou i 
Ox Ox ' i =  1 , 2 ,  

and rewrite the system of equations of second order (16), (17) in equivalent form: 
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where the hypermatrices R and R i are determined by the relations 

~ R - -  o } M ~ ' 

here 0 denotes the null matrix all of whose elements are equal to zero, and 0 denotes the 
null vector all of whose elements are also equal to zero. 

The common solutions of Eqs. (23) and (24) are conveniently written in the following 
form: 

o = r (x, o) o (o) + 4,~ (x, o) % (o) + r .  
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0 0 0 0 
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0 0 

It is easy to see that the solution of the problem in the form (25) is fully determi- 
nate if the vectors v i, i = i, 2 (to be determined below) are known, and the components of 
the block column vector are: 

g colon {0 (0)', O~ (0)', u 1 (0)', u~ (0)', u 2 (0) ~, 2 .~,~. = u ~  (o/ I ,  

where ,  t h e  s u p e r s c r i p t  T d e n o t e s  t h e  o e p r a t i o n  o f  t r a n s p o s i t i o n .  R e q u i r i n g  t h a t  t h e  b o u n d a r y  
c o n d i t i o n s  ( 1 9 ) - ( 2 l )  be  f u l f i l l e d ,  we a r r i v e  a t  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s  f o r  d e t e r -  
m i n i n g  t h e  s o u g h t  c o m p o n e n t s  o f  t h e  v e c t o r  g: 

K g = s ,  

where the nonzero elements of the hypermatrix K are determined by the relations 

Kll --  - -  K13 = K2~ = - -  K35 := E, K2~ --  - -  rolE, Ks6 '= - -  m2E, 

K~I = q511(b, 0), g3~ = ~ 2  (b, 0), Ka~ := q~21 (b, 0), gt2 = = :  qi~22 (b, 0), 

G~ = 4)~ (b~, o), K~, = 4G (b~, o), K,s = q4~ G ,  o), Koo = 4G (G o).  

The components of the block column vector of the right-hand sides are conveniently 
written in the form 

s == s o + X, s o = - -  colon {0 ~, 0", r~ (Of, rz (b)", r~ (b~), r~ (G)*}, 

== - -  colon {0 ~, 0", 0", 0 ~, (E~ (b 0 v~) ~, (E~ (b2) v2)~}. 
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Assume that W = K -~, then the components of the vector g are determined by the relation 

g=Ws0+W~, 

from which follows that all the components of the vector g depend linearly on v I and v 2 

Let us revert to Eq. (18) with the initial conditions (22). We note that the expression 

~i u i consists of two terms, one of which is some function of the z-coordinate, and the other 

is proportional to the sought function v i, where the structure of the expression Niui is sfleh 

that Eq. (18) is a system of "interconnected" equations. Indeed, the sought dependences U~(x) 
can be written in the form 

u ~ (x) = p~ (x) + ,4~ (x) v~ ~ B~ (x) v~, 

where 

( 2 6 )  

~f = r (X, O) (Wso)i+ 2 @ r (x, O) (Wso)i+ 3 @ F~ (X); 

A~ = ' (r  (x, O) W,+~,~ + ~ 2  (x, O) W~+3,~) S2 (b,) + (2 - -  i) ~ ,  (x); 

here expression Wij is a square matrix element (ij) of the hypermatrix W whose dimensionality 
is 6 • 6; expression (Ws0) j is the element j of the block column vector (i.e., the column 
vector of corresponding dimensionality). 

After substituting relation (26) into the differential equation (18) we obtain 

a-z--v+ Ov = h, ( 2 7 )  
Oz 

where 

b i 

, 0 

[ 2& \ ~ b, i, 2; = N , -  ( - @ - )  A I, 
6 

1 bt 
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0 
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v2, \G21 G2_ 

The solution of Eq. (27) is known: 

where 

0 z 0 
v = r (z, o) v (o) 4- .t q~ (z, ~) h (~) dL  ( 2 8 )  

0 

�9 0 0 \ 
o 

d) (x, ~) = ~ ,2) = exp [--  G (z - -  ~)l. 

\q52t q5.,.2/ 

Requiring that the initial condition (22) be fulfilled, we obtain 

1 

(v~ 1 v(O)-- v . =  ~ , 
V~ ( 2 9 )  

which concludes the construction of the solution of the problem under consideration as a 
whole since in the image space all the sought functions have been determined, and the in- 
verse transformation, with the respective assumptions fulfilled, is carried out by rule (14). 

It is not difficult to examine the case of flows of heat carriers moving in "counter- 
flow." For the sake of determinacy let the first flow be in the direction of the z-axis, 
and the second flow in the opposite direction. The length of the heat exchanger along the 
z-axis is equal to a. In that case G 2 < 0, and the boundary conditions (12) for the system 
of Eqs. (i) are replaced by the following ones: 
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o~ (t, o) = vk (t), o2 (t, a) = v~ ( t )  ( 3 o )  

All the results obtained above including relation (28) remain valid, only relation (29) 
requires some amendment. In accordance with conditions (30) we have: 

1 
vl  (0) : v~  

and then 

0 0 
v2 (o) - -  ( 4 ~  (a, o))-1 (v~ - y2 (a) - 4~1 (a, o) vk) ,  

where 

z 0 

(Y ~ = i 4 ( z ,  ~)h(~)d~.. y (z) : -  y2 

Thus the block column vector v(0) in relation (28) has been fully determined, the solution 

is concluded. 

Let us consider the case of loop motion of the flow of heat carrier in a heat exchanger. 
As before, G l > 0, and G 2 < 0. We note that loop motion of flows with decreased or increased 

flow rate in the section z =a, may be considered, below therefore IG21~G I. Moreover, in- 
creased flow rate in the "reverse" flow can lead to a change of temperature of the flow in 
the section z = a An analogous effect is attained by localized supply (removal) of thermal 
power to (from) the flow. In the general case of loop motion the boundary conditions for 
the system or equations (i0) have the form 

1 
ol (o, t) : v ,  (t), o2 (a, t) = vl (a, t) + q (t). ( 3 1 )  

In accordance with condition (31) we have 

vl (0) i o o o o , 
: v , ,  v2 (O) = (412 (a, 0 ) - - 4 ~ 2 ( a ,  O ) ) - l [ q + y 2 ( a ) - - Y l ( a )  + ( 4 2 1 ( a ,  0 ) - - 4 1 1 ( a ,  O))v,] ,  

which fully solves the stated problem, attained 

If in the heat exchanger under consideration circulation of the heat carrier is arranged 
in a closed circuit (G I > 0, G 2 < 0, IG21~G l) with two active sections affecting the flow 
of heat carrier z = 0 and z = a, then the system of boundary conditions for Eqs. (i0) assumes 

the form 
U 1 (0,  t) = U 2 (0 ,  t) J[- qO(t), O 2(0 ,  t) : V l (a ,  t ) - -  qa(t) .  

(32) 

With a view to expression (28) relations (32) in the image space assume the form 
O 0 

v~ (o) = v~ (o) + qO, ~ .  (a, o) v~ (o) + r  (a, o) v~ (0) + y~ (a) = 

0 0 
= 421 (a, O) v l  (0) + 422 (a, O) v2 (0) + # (a) - -  qa. 

We s u b s t i t u t e  t h e  f i r s t  o f  t h e  o b t a i n e d  r e l a t i o n s  i n t o  t h e  s e c o n d  one  and s o l v e  i t  f o r  

v 2 ( O ) :  o o o o 
V 2 (0) = ((J~11 (a ,  O) --~ 4/)12 (a,  O) - -  (~21 (a,  O) - -  (~2~ (a,  0)) -1 X 

0 0 

X [y2 (a) - -  yl (a) - -  q'~ + (421 (a, O) - - 4 1 1  (a, 0)) qO]. 

Thus, in this case, too, the solution of the problem can be concluded. 

To illustrate the possibilities of the method we calculate the temperature distribu- 
tion over the plate, the tube walls, and in the specified section of the flow of heat car- 
riers for "parallel flow" on the assumption that: the initial distributions of temperatures 
over the heat exchanger (including the temperature of the flows) are uniform and taken as 
the reference point, flows of heat carrier with dimensionless temperature equal to unity 
are supplied to the inlet of the heat exchanger; there is no heat exchange with the environ- 
ment; the dimensionless length of the tubes is a = i, the dimensionless width of the plate 
is b = 0.i, the dimensionless size of the half-perimeter of the cross section of the tube is 
b I = b 2 = 0.i, the factors of thermal connection of the tube walls with the plate are m I = 
-an 2 = -2; the dimensionless flow velocities were adopted equal to i0, the dimensionless heat 
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TABLE i. Results of the Calculation 

Temperature �9 t 
o,I  i 0,5  I 1,0 

0 
u I ,2 

VI ,2 

z=0,2;  x=O,06 
0,0917 0,172 
0,0925 0,173 
0,937 0,~45 

0,272 
0,273 
0,954 

0 
ttl ,2 
vl ,2 

z=0,6; x=O,06 
0,0739 I 0,151 
0,0746 0,152 
0,819 0,842 

0,248 
0,249 
0,869 

exchange coefficients between the tube and the flow of heat carrier equal to 0.5; the dimen- 
sionless heat exchange coefficients between the flow of heat carrier and the tube wall equal 
to 0.058, the dimensionless values of the "thermal diffusivity" equal to unity. In the solu- 
tion, two terms of the expansion were retained (for L 0 = 1 and L i = 1 - t), in the calculation 
of the matrix exponent by the recurrent method 8 terms of the expansion were used. It can 
be seen from Table 1 that even with the adopted approximation the solutioin is in full agreement 
with the physical meaning of the problem. In fact, the heating of the plate lags somewhat 
behind the heating of the material of the tube wall, sections further from the inlet to the 
heat exchanger are heated more slowly than nearer ones. The table does not show the symmetry 
of the results of the calculation of the temperature in the sections x = const symmetrically 
arranged about the center of the plate, nor does it show that in the section far from the 
plate the tube wall is heated more intensely than in the section near the plate. 

Thus the problems under consideration, dealing with the nonsteady temperature field 
in a thin plate between two tubes interacting with the flows of heat carriers, may be regarded 
as concluded. There are no difficulties in principle in extending the method of integral 
Laguerre transformations to the case of time-dependent variables of the flow rates of heat 
carriers, variable parameters of heat exchange with respect to x and t, and to cases of non- 
ideal thermal contact between the tube walls and the edges of a plate. 

NOTATION 

6, u, v) temperature; t) time; x, z) coordinates; 6, 6 i, 62 ) thicknesses of the plate 
wall and the tube; b, bi, b 2) plate width and half-perimeters of the cross section of the 
tubes; F) cross-sectional area of the tube; G) flow rate; c, Cp) heat capacity of the materi= 

al and of the flow, respectively; %) thermal conductivity of the material; ~, ~, ~) heat 
transfer coefficients; Tamb) ambient temperature; q) reduced thermal effect. 
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